On Generalized Jacobsthal and Jacobsthal-Lucas polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New families of Jacobsthal and Jacobsthal-Lucas numbers

In this paper we present new families of sequences that generalize the Jacobsthal and the Jacobsthal-Lucas numbers and establish some identities. We also give a generating function for a particular case of the sequences presented. Introduction Several sequences of positive integers were and still are object of study for many researchers. Examples of these sequences are the well known Fibonacci ...

متن کامل

On Some Identities of k-Jacobsthal-Lucas Numbers

In this paper we present the sequence of the k-Jacobsthal-Lucas numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam in 1988. For this new sequence we establish an explicit formula for the term of order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function. Mathematics Subject Classification 2010: 11B37, 11B83

متن کامل

Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers

Circulant matrix family occurs in various fields, applied in image processing, communications, signal processing, encoding and preconditioner. Meanwhile, the circulant matrices [1, 2] have been extended in many directions recently. The f(x)-circulant matrix is another natural extension of the research category, please refer to [3, 11]. Recently, some authors researched the circulant type matric...

متن کامل

On the Jacobsthal-Lucas Numbers by Matrix Method

In this study, we define the Jacobsthal Lucas E-matrix and R-matrix alike to the Fibonacci Q-matrix. Using this matrix represantation we have found some equalities and Binet-like formula for the Jacobsthal and Jacobsthal-Lucas numbers.

متن کامل

On Jacobsthal Binary Sequences

S. Magliveras and W. Wei∗, Florida Atlantic University Let Σ = {0, 1} be the binary alphabet, and A = {0, 01, 11} the set of three strings 0, 01, 11 over Σ. Let A∗ denote the Kleene closure of A, and Z the set of positive integers. A sequence in A∗ is called a Jacobsthal binary sequence. The number of Jacobsthal binary sequences of length n ∈ Z is the n Jacobsthal number. Let k ∈ Z, 1 ≤ k ≤ n. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2016

ISSN: 1844-0835

DOI: 10.1515/auom-2016-0048